0%

(2018) CANDY:Conditional Adversarial Networks based Fully End-to-End System for Single Image Haze Removal

Swami K, Das S K. Candy: Conditional adversarial networks based fully end-to-end system for single image haze removal[J]. arXiv preprint arXiv:1801.02892, 2018.



1. Overview


现有的去雾方法关注intermediate parameter (transmission map),并没有将haze-free image quality考虑到optimization framework中。而intermediate parameter的估计误差会进一步影响haze-free image的质量。

因此,论文提出CANDY (Conditional Adversarial Networks based Dehazing of hazY images)结构

  • First work of end-to-end de-hazing to generate haze-free image
  • First work of introducing GAN for de-hazing

1.1. 速度

On GPU.

  • 256x256. 35ms
  • 1024x1024. 53ms
  • Model size 3MB

估计intermediate parameter,没有将image quality考虑到optimization framework中。

  • DehazeNet
  • Multi-scale Net

1.3. Model



1.3.1. Generator

  • 6 Conv + 6 Deconv. 3x3 kernel size, 64 channels, 1 stride, 1 padding
  • Down-Sampling会导致图片特征丢失
  • PReLU


1.3.2. Discriminator

  • 7 Conv. 3x3, 2s, 1p, double channel
  • Leaky ReLU. λ=0.2

1.4. Loss Function



  • Content Loss


  • Feature Reconstruction Loss


使用VGGNet提取

  • 9(relu2_2)
  • 16(relu3_3)
  • 23(relu4_3)

1.5. 数据集

  1. Make3D Depth
  2. BSDS500
  3. MeddleBury
  • NYU Depth只包含indoor images
  • 论文使用CVPR 2015的single image depth estimation方法估计图片的depth
  • α = [k, k, k], k ∈ [0.7, 1], β ∈ [0.5, 1.5]

1.5.1. Training Set

  • 700 x 3 images. 500 from Make3D, 200 from BSDS500

1.5.2. Validation Set

  • 40 images

1.5.3. Testing Set

  • Test-Synthetic-A. 90 from Make3D and BSDS500
  • Test-Synthetic-B. 23 from Middlebury
  • Test-Real-500



2. Experiments


2.1. Baseline

  • GEN. L2 loss + 9th L2 loss
  • CANDY_L1_9P. 500 iteration GEN initialized

2.2. 模型选择




  • Smooth L1比L2更有效,并且能够稳定GAN训练
  • Lower Layers feature reconstruction的结果更好。可能是因为higher layer preserve spatial structure,而忽略了texture and color

最终选择CANDY_L1_9P。

2.3. 实验结果





2.4. Night Hazy Image

Although train on daytime hazy image, it can work on night hazy image.